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Abstract. In this work, the effect of spin-quadrupole forces on the 0+ sates in 158Gd has been investigated.
For this purpose, the model Hamiltonian including monopole pairing, quadrupole-quadrupole and spin-
quadrupole forces has been diagonalized in one phonon basis. In conclusion, for the distribution of energies
of the states and their collective properties, fairly good results have been obtained.

PACS. 21.60.Jz Hartree-Fock and random-phase approximations – 21.60.Ev Collective models

1 Introduction

Collective states in deformed and transitional nuclei have
been extensively studied in numerous experimental and
theoretical works. Although there were many experimen-
tal data on lower 0+ states [1,2], understanding of the
mechanism of the 0+ states in even-even deformed nuclei
is still a challenge for theory. In other words, the nature of
the 0+ states is the one of the most controversial subject
in these nuclei. In particular, the structure of the lowest
one has become a research field by itself [3]. A summary of
recent discussions on the nature of the 0+ states and the
status of the problem are presented in [3]. It is interesting
to note that, while the nature of the lowest 0+ state has
not been understood certainly yet, the observation of a
large number of 0+ states in a recent (p, t) experiment [4]
in 158Gd made the explanation of their mechanism difficult
and stimulated new studies on this field. In addition, the
most recent (p, t) experiment conducted by Wirth et al.

also reveals about ten 0+ states below 2.5 MeV for some
actinide nuclei [5]. According to these results, it is natural
to expect that similar numbers of 0+ excitations may ap-
pear throughout deformed regions. For that reason, it is
important to understand the origin of such a large num-
ber of 0+ modes. So far, although many theoretical studies
on the 0+ excitations in deformed nuclei exist in the last
decades, there is not any study considering the situation
up to∼ 3 MeV because of the unavailability of data in that
range [1–3]. Recently the 0+ states in 158Gd have been
studied by Zamfir et al. [6] using the Geometric Collective
Model (GCM), sd-IBM and spdf-IBM. According to the
results of this study, GCM and sd-IBM each can treat only
6 states up to 3.1 MeV. Moreover, spdf-IBM could give 9
or 10 states up to the energy range in question. Because
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of this result Zamfir et al. concluded that many of the 0+

states might have a two-phonon octupole character. Nev-
ertheless, this conclusion is a weak argument because their
models do not include the two-quasiparticle (2qp) compo-
nents. Another theoretical work on this subject belongs to
Sun et al. [7]. In this work, the 0+ excitations in 158Gd
have been investigated in terms of 2 and 4qp excitations
using the Projected Shell Model in the framework of the
Tamm-Dancoff approximation (TDA). A further theoret-
ical study has been made in [8]. In that work Iudice et

al. used QPM including monopole and quadrupole pair-
ing with a quadrupole-quadrupole force term. Making a
detailed analysis, they presented the calculations on the
microscopic properties including energies, E2, E0 transi-
tions and two-nucleon spectroscopic factors with the shell
and multiphonon structure of the 0+ states. The last study
has been made in [9] by using the pairing-plus-quadrupole
model (PPQ), including only monopole pairing; a good
description has been given for the distribution and the
nature of the 0+ states.

As a result, the whole developments mentioned above
imply that new microscopic models and interactions that
can give new contributions are necessary. In particular, the
interactions that can generate new states below ∼ 2 MeV
for a consistent explanation of the distribution of the
states and the collective properties of the lowest states in
question are needed. In fact, as stated above, the experi-
ment which were conducted by Lesher et al. showed that
158Gd has seven 0+ states below ∼ 2 MeV. This fact lead
us to explore new interactions to increase the number of
states below 2 MeV. To this purpose, one of the useful in-
teraction might be the spin-quadrupole (SQI) interaction.
This interaction was first studied by Kisslinger in single-
closed-shell spherical nuclei, many years ago [10]. The ef-
fects of the spin-quadrupole interaction in deformed nuclei
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have been searched by Pyatov and collaborators [11–18].
However, this interaction has been neglected by many re-
searchers so far. Using the spin-quadrupole interaction,
Pyatov et al. pointed out that a significant decrease of
the diagonal amplitude can be obtained. Moreover, this
interaction can generate a new 0+ state below the energy
gap in even-even nuclei. The latter property of this inter-
action is very important for the investigation on the 0+

states in 158Gd.
In this paper, in order to study the nature of the 0+

excitations in the 158Gd isotope and investigate the gen-
eral behavior of the quantities that characterize them,
we use the model Hamiltonian including monopole pair-
ing, quadrupole-quadrupole and spin-quadrupole forces
in the framework of the Random Phase Approximation
(RPA). In this direction, the energies, the quadrupole
B(E2;Kπ = 0+ → 2+

gsb) and the monopole ρ2(E0) transi-
tions to the ground-state band and the spectroscopic fac-
tors of (t, p) and (p, t) reactions were calculated.

2 Model

The model Hamiltonian in the second quantization repre-
sentation can be given as

H = Hsp +Hpair +HQQ +HSQ. (1)

Here

Hsp =
∑

sσ

(E(s)− λN )a†sσasσ , (2)

Hpair = −GN

∑

s

a†s+a
†
s−as−as+ , (3)

HQQ = −1

2

∑

λ

∑

µ

χλQ†λµQλµ , (4)

HSQ = −1

2
χ2
σT

†
σ(λµ2)Tσ(λµ2) , (5)

and the multipole moment and the spin-multipole inter-
action operator, respectively, are

Qλµ =
∑

ss′

σσ′

〈sσ|fλµ|s′σ〉a†sσas′σ′ , (6)

Tσ(λµ2) =
∑

s,s′,σ

{

tλµ(s, s′)a†sσas′σ + σt̄λµ(s, s′)a†sσas′−σ

}

.

(7)

The labels sσ stand for the single-particle asymp-
totic quantum numbers s = NnzΛ ↑ for Kπ = Λ + 1

2

and s = NnzΛ ↓ for Kπ = Λ − 1
2 with σ = ±1.

Naturally, the indices of the operator (6) and (7) are
λ = 2 and µ = 0 for the quadrupole-quadrupole and also
for spin-quadrupole forces. In addition, in (6) the selec-
tion rule for the quadrupole-quadrupole matrix elements
f(s, s′) ≡ 〈sσ|r2Y20|s′σ〉 = 〈sσ|f20|s′σ〉 is K2 ± µ = K1.

Spin-multipole matrix elements in (7) are calculated ac-
cording to

t2µ(s, s′) ≡
〈

s+

∣

∣

∣

∣

r2
[

{σY2}2µ + (−1)µ{σY2}2−µ

]

∣

∣

∣

∣

s′+

〉

=

〈

s−
∣

∣

∣

∣

r2
[

{σY2}2µ + (−1)µ{σY2}2−µ

]

∣

∣

∣

∣

s′−
〉

,

t̄ 2µ(s, s′) ≡
〈

s+

∣

∣

∣

∣

r2
[

{σY2}2µ + (−1)µ{σY2}2−µ

]

∣

∣

∣

∣

s′−
〉

= −
〈

s−
∣

∣

∣

∣

r2
[

{σY2}2µ + (−1)µ{σY2}2−µ

]

∣

∣

∣

∣

s′+

〉

,

t2µ(s, s′) = −t2µ(s′, s) , t̄ 2µ(s, s′) = t̄ 2µ(s′, s) .

Here for the spin-quadrupole interaction that can be
related with the Kπ = 0+ (µ = 0) states, the part of the
operator takes the form,

{σY2}20 =
1√
2
(σ+Y2,−1 − σ−Y2,−1) .

Now, if the Hamiltonian (1) is written for neutrons and
also protons, the total Hamiltonian of the model can be
given as

H = Hsp(n)+Hsp(p)+Hpair(n)+Hpair(p)+HQQ+HSQ .
(8)

In order to obtain the energies and wave functions of
the excited 0+ sates, we follow the RPA method in this
work. In the RPA method, the first step consists in ex-
pressing the Hamiltonian in terms of the quasiparticle op-
erators αsσ and α†sσ, by making use of the Bogolyubov
canonical transformation

asσ = usαsσ + σvsα
†
s−σ .

In deriving the quasiparticle energies and the u , v that
are the BCS particle occupation probabilities, we take into
account monopole (λ = µ = 0) pairing.

The second step consists in constructing the RPA
phonon operators

Q†n =
1

2

∑

ss′

(ψn
ss′A

†(ss′)− ϕn
ss′A(ss′)) ,

where n labels the RPA roots, i.e. it denotes the n-
th 0+ state. A†(ss′)(A(ss′)) is the quasiparticle pair of
the creation (annhilation) operator. In the result, the
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Hamiltonian (8) in the phonon representation becomes,

H =
∑

q

ε(q)B(q, q)

−1

4

∑

nn′

{

GN

∑

ss′

[

(u2
s − v2

s)(u
2
s′ − v2

s′)g
n
ssg

n
s′s′
]

+GN

∑

ss′

wn
ssw

n
s′s′+GZ

∑

rr′

[

(u2
r−v2

r)(u
2
r′−v2

r′)g
n
rrg

n′

r′r′

]

+GZ

∑

rr′

wn
rrw

n′

r′r′

}

Q†nQn′

−χ
4

∑

nn′

∑

qq′q2q′2

uqq′uq2q′2f(q, q
′)gnqq′f(q2, q

′
2)g

n′

q2q′2

×
{

Q†nQn′ +Q†n′Qn

}

−χσ

4

∑

nn′

∑

qq′q2q′2

t20(q, q′)u
(−)
qq′ w

n
qq′

×
∑

q2q′2

t20(q2, q
′
2)u

(−)
q2q′2

wn
q2q′2

{

Q†nQn′ +Q†n′Qn

}

. (9)

In the Hamiltonians (3) and (7), GN (GZ) denotes the
pairing strength constant for neutrons (protons) which is

1

GN
=
∑

s

1

2εs
. (10)

In addition, χ and χσ denote the quadrupole-
quadrupole and spin-quadrupole interactions strength
constants, respectively. In the equations, the index q
means that the expression is valid for neutrons and also
protons. Moreover, the functions in (9) are given as

gnss′ = ψn
ss′ + ϕn

ss′ , wn
ss′ = ψn

ss′ − ϕn
ss′ ,

uqq′ = uqvq′ + uq′vq , u
(−)
qq′ = uqvq′ − uq′vq .

Here, us and vs are the famous BCS particle occupa-
tion probabilities given by

u2
s =

1

2

{

1 +
(E(s)− λN )

εs

}

,

v2
s =

1

2

{

1− (E(s)− λN )

εs

}

,

where E(s) and λN denote the single-particle energies and
the chemical potential, respectively. On the other hand,
the quasiparticle energies ε(s) are equal to

ε(s) =
√

(E(s)− λN )2 +∆2
N .

In the RPA method the collective 0+ states are con-
sidered as one-phonon excitations and the wave function
of the n-th 0+ state is described by

|ψn〉 = Q†n|ψ0〉 =
1√
2

∑

ss′,τ

[ψn
ss′(τ)A

†
ss′ − ϕn

ss′(τ)Ass′ ]|ψ0〉 ,

(11)

where Q†n is the phonon creation operator, and |ψ0〉 is the
phonon vacuum, which corresponds to the ground state
of an even-even nucleus. The isotopic index τ takes the
values n (p) for neutrons (protons). The two-quasiparticle
amplitudes ψn

ss′ and ϕn
ss′ are normalized by

∑

ss′τ

(ψn
ss′(τ)

2
− ϕn

ss′(τ)
2) = 1 . (12)

Solving the equation of motion for the Hamiltonian (9)

[

H,Q†n
]

= ωQ†n , (13)

the secular equation that gives the excitation energies is
found as

(1− χF (ω))(1− χσS(ω)) = χχσW
2(ω) , (14)

where

S(ω) =
∑

qq′

[

t20(q, q′)
]2
(u

(−)
qq′ )

22εqq′

ε2qq′ − ω2
, (15)

W (ω) =
∑

qq′

2ωf(q, q′)t20(q, q′)uqq′u
(−)
qq′

ε2qq′ − ω2
. (16)

The structure of the F (ω) term in (14) and other de-
tails can be found in [2].

3 Collective properties of the 0+ excitations

In order to search for the collectivity and to investigate
the nature of 0+ states, we calculated the electromagnetic
B(E2), ρ2(E0) transition probabilities and the (t, p) and
(p, t) reaction strengths relative to the ground-to-ground

strengths; S̃n(t, p) = Sn(t, p)/Sg.s(t, p) and S̃n(p, t) =
Sn(p, t)/Sg.s(p, t). Consequently, there can exist a few sit-
uations for the nature of the 0+ states in this model:

a) If a state has a pure β-vibrational nature, the two-
nucleon transfer strengths should be relatively small and
B(E2) and ρ2(E0) transitions should be relatively large:

B(E2; 0+0→ 2+0) =

e2

2

∣

∣

∣

∣

(1 + ep)
∑

rr′

gnrr′f(r, r
′)urr′ + en

∑

ss′

gnss′f(s, s
′)uss′

∣

∣

∣

∣

2

,

B(E0) = ρ2(E0) =

e2

2R4
0

∣

∣

∣

∣

(1+ep)
∑

rr′

〈r|r2|r′〉gnrr′urr′+en
∑

ss′

〈s|r2|s′〉gnss′uss′
∣

∣

∣

∣

2

,

where, ep and en are the proton and the neutron effec-
tive charges, respectively. In the calculations we take their
values as 0.1. In the ρ2(E0) transition, R0 is the nucleus
radius mean value. In addition, the index r (s) denotes
proton (neutron) states.

b) If a state has a pure pairing vibrational nature, the
B(E2) and ρ2(E0) transitions should be relatively small
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and at least one or both of the two-nucleon transition
strengths should be relatively large:

S̃n(t, p) =
Sgs→es(t, p)

Sgs→gs(t, p)
=

∣

∣

∣

∣

∣

∣

∑

s
(u2

sψ
n
ss − v2

sϕ
n
ss)

∆N

GN

∣

∣

∣

∣

∣

∣

2

,

S̃n(p, t) =
Sgs→es(p, t)

Sgs→gs(p, t)
=

∣

∣

∣

∣

∣

∣

∑

s
(u2

sϕ
n
ss − v2

sψ
n
ss)

∆N

GN

∣

∣

∣

∣

∣

∣

2

.

Thus, the states whose S̃n(t, p) and S̃n(p, t) values are
relatively large (> 1–2%) were accepted as pairing vibra-
tional type. In fact it is difficult to find a pure pairing vi-
brational or a pure β-vibrational state, because collective
0+ states frequently have a mixed structure in the RPA
due to the coupling between pairing and β-vibrational
modes.

c) In the framework of the present model another pos-
sibility can be the spin-quadrupole vibrational mode. Its
properties will be discussed in the next section.

d) Naturally if any state has relatively weak B(E2)
and ρ2(E0) values and also relatively weak two-nucleon
transfer strengths, it should be a 2qp structure. In this
context, it is beneficial to state that many of the 0+ states
have 2qp structure in RPA.

4 Calculations and discussion

In order to study the excited 0+ states in 158Gd, we
used a model Hamiltonian including monopole pairing,
quadrupole-quadrupole and spin-quadrupole forces. The
energies and wave functions of the 0+ states were cal-
culated in RPA with the wave functions consisting of
only one-phonon terms. To obtain the numerical results,
the single-particle Hamiltonian developed by Boisson and
Piepenbring was used [19]. To simplify the matrix el-
ements, the asymptotic basis of eigenvectors was pre-
ferred. All of the calculations have been performed us-
ing the deformation value ε2 = 0.27. In addition, all
states of the N = 4, 5 and 6 shells for neutrons and
protons (64 levels for each) were taken into account. For
the calculation of the monopole pairing strength, gap pa-
rameters are used as ∼ 11.2/A1/2 MeV for protons and
∼ 12/A1/2 MeV for neutrons, respectively. The experi-
mental data have been taken from [3,4,8,20,21]. To in-
vestigate the effect of the spin-quadrupole interaction on
the 0+ states, the calculations were performed in two
ways. In the first one, the energies and related transi-
tion strengths have been calculated using the pairing-plus-
quadrupole model (PPQ) i.e., without spin-quadrupole
forces. In the second one, the calculations in question
have been made using the model including monopole
pairing, quadrupole-quadrupole and also spin-quadrupole
forces (PPQSQ). For comparison, the results of the two
models have been presented in table 1. In addition, to
search for the dependence of the properties of 0+ states
on the strengths of the quadrupole-quadrupole and spin-
quadrupole forces the following calculations have been

made. First, while the spin-quadrupole strength constant
is changed, the quadrupole-quadrupole strength constant
is kept fixed. These values are given in tables 1 and 2.
Second, the inverse procedure has been followed, i.e. the
spin-quadrupole strength constant is kept fixed. These val-
ues are presented in table 2. In tables 1 and 2, the cor-
responding theoretical and experimental values of the en-
ergies in the first column, the B(E2;Kπ = 0+ → 2+

gsb)
transitions in the second column, the monopole transi-
tions ρ2(E0) in the third column, the (t, p) spectroscopic
factors in the fourth column and the (p, t) spectroscopic
factors in the fifth column are given. The calculations have
been performed for fifteen states because the observed top
experimental state is at ∼ 3.1 MeV. The (t, p) and (p, t)
reactions spectroscopic factors were given relative to the
ground-to-ground strengths S̃n(t, p) = Sn(t, p)/Sg.s(t, p)

and S̃n(p, t) = Sn(p, t)/Sg.s(p, t).

It is clear from table 1 that according to the PPQ
model there is only one 0+state which lies below the
gap energy level (2∆) and it is generated essentially by
quadrupole-quadrupole interaction [1,2]. The first values
on the left side in table 1 belong to the PPQ model. Com-
parison reveals that the second state of the present model
has not any corresponding state in the PPQ model, i.e. the
state in question is produced by the spin-quadrupole inter-
action. This property was also reported in [14,15]. Thus,
as is seen from the tables there are two calculated 0+ states
below the gap and each one has relatively strong B(E2)
and ρ2(E0) transition probabilities and also large (t, p)
and (p, t) strengths. Analysing the tables it is clear that
while the spin-quadrupole and quadrupole-quadrupole
strengths are changing the most sensitive states are the
two lowest ones. Especially they depend sensitively on the
spin-quadrupole interaction strength. Moreover, it is clear
from the tables that these states behave in the same way
while the strength parameters are changing. This situa-
tion reveals also these states are not pure because of the
coupling. As is seen from eq. (14), the interference term
in (16) causes this coupling in which there exist both
quadrupole-quadrupole and spin-quadrupole matrix ele-
ments. Thus the strength of the spin-quadrupole inter-
action affects the energies and its collectivity of the sec-
ond and also the first state. Variation of the strength of
the quadrupole-quadrupole interaction results in a simi-
lar influence. Specifically, it is possible to conclude from
the calculations for the collective properties of the spin-
quadrupole vibrational mode that it has relatively large
B(E2) strength, considerable spectroscopic factors, and
weak B(E0) strength. In addition, the quadrupole collec-
tivity and the values of spectroscopic factors are weaker
than those of the first one.

In general, the energies of the first two states have
a tendency to decrease as the strength of the forces in-
creases. In addition, the energies of a few states are also
changing although they are not considerable. If the calcu-
lated values of the PPQSQ model in table 1 are accepted
as a base, the best agreement between the theory and
data is obtained for the S̃n(p, t) values of the, 4., 6., 7., 8.,
and 11., states [4]. Furthermore, the theoretical energies
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Table 1. Calculated values of the excited 0+ states of 158Gd.

PPQ PPQSQ

χ = 3.1A−4/3
~ω0 χ = 2.5A−4/3

~ω0, χσ = 1.54A−4/3
~ω0

Energy B(E2) ρ2(E0) S̃(t, p) S̃(p, t) Energy B(E2) ρ2(E0) S̃(t, p) S̃(p, t)

(MeV) (w.u.) (MeV) (w.u.)

1.19 2.1235 0.0360 0.2621 0.2361 1.37 1.1637 0.0197 0.1477 0.1433

1.79 0.0123 0.0040 0.0027 0.0048 1.71 0.2463 0.0028 0.0302 0.0427

1.93 0.0550 0.0001 0.0007 0.0009 1.80 0.0028 0.0124 0.0003 0.0006

1.96 0.0020 0.0000 0.0000 0.0030 1.93 0.0575 0.0002 0.0007 0.0009

1.97 0.0478 0.0024 0.0058 0.0058 1.96 0.0010 0.0000 0.0003 0.0032

2.21 0.0303 0.0002 0.0000 0.0000 1.97 0.0453 0.0026 0.0023 0.0032

2.36 0.0902 0.0004 0.0095 0.0349 2.21 0.0289 0.0002 0.0000 0.0000

2.71 0.0035 0.0000 0.0094 0.0146 2.41 0.0453 0.0002 0.0028 0.0381

2.76 0.0089 0.0000 0.0000 0.0057 2.71 0.0036 0.0000 0.0095 0.0145

3.00 0.0683 0.0005 0.0151 0.0044 2.81 0.0627 0.0000 0.0076 0.0007

3.06 0.0077 0.0006 0.0020 0.0001 3.02 0.0373 0.0007 0.0059 0.0013

3.13 0.0005 0.0000 0.0007 0.0117 3.09 0.0030 0.0009 0.0041 0.0001

3.16 0.0084 0.0030 0.0001 0.0008 3.13 0.0004 0.0000 0.0006 0.0117

3.21 0.0000 0.0000 0.0084 0.0030 3.16 0.0086 0.0031 0.0000 0.0004

3.28 0.0002 0.0000 0.0009 0.0003 3.21 0.0000 0.0000 0.0083 0.0027
∑

n

Sn = 0.33
∑

n

Sn = 0.26

Table 2. Calculated values of the excited 0+ states of 158Gd.

PPQSQ PPQSQ

χ = 2.5A−4/3
~ω0, χσ = 1.56A−4/3

~ω0 χ = 2.8A−4/3
~ω0, χσ = 1.56A−4/3

~ω0

Energy B(E2) ρ2(E0) S̃(t, p) S̃(p, t) Energy B(E2) ρ2(E0) S̃(t, p) S̃(p, t)

(MeV) (w.u.) (MeV) (w.u.)

1.30 1.4712 0.0250 0.1843 0.1729 1.21 2.0208 0.0343 0.2490 0.2251

1.69 0.2950 0.0039 0.0376 0.0506 1.64 0.4023 0.0062 0.0527 0.0650

1.80 0.0025 0.0118 0.0009 0.0017 1.79 0.0042 0.0087 0.0030 0.0052

1.93 0.0574 0.0002 0.0007 0.0009 1.93 0.0565 0.0002 0.0007 0.0009

1.96 0.0010 0.0000 0.0002 0.0032 1.96 0.0014 0.0000 0.0001 0.0031

1.97 0.0455 0.0026 0.0025 0.0032 1.97 0.0472 0.0026 0.0036 0.0040

2.21 0.0289 0.0002 0.0000 0.0000 2.21 0.0293 0.0002 0.0000 0.0000

2.40 0.0457 0.0002 0.0028 0.0380 2.39 0.0600 0.0003 0.0046 0.0368

2.71 0.0036 0.0000 0.0095 0.0145 2.71 0.0036 0.0000 0.0095 0.0145

2.81 0.0610 0.0000 0.0072 0.0005 2.81 0.0610 0.0000 0.0072 0.0005

3.02 0.0418 0.0008 0.0065 0.0014 3.01 0.0101 0.0002 0.0022 0.0005

3.08 0.0028 0.0008 0.0043 0.0001 3.08 0.0028 0.0008 0.0043 0.0001

3.13 0.0004 0.0000 0.0006 0.0117 3.13 0.0004 0.0000 0.0006 0.0117

3.16 0.0084 0.0030 0.0000 0.0004 3.16 0.0079 0.0030 0.0000 0.0006

3.21 0.0000 0.0000 0.0083 0.0027 3.21 0.0001 0.0000 0.0088 0.0028
∑

n

Sn = 0.30
∑

n

Sn = 0.37

of the 5., 6., 8., 13. and 14. states agree with the cor-
responding experimental values [4]. We observe from the
experimental data of 158Gd that weak B(E2) values of the
first state imply that the first 0+ state might be pairing
vibrational or a mixture of pairing and β-vibration mode.
By studying the related experimental data of 0+ states,
Garrett concluded that any state to be properly labeled
as β-vibrational should have B(E2;Kπ = 0+ → 2+

gsb) val-

ues of 12–33 w.u. and ρ2(E0)× 103 values of 85–230 and
weak two-nucleon transfer strengths [3]. As is seen from
the tables neither of the states has a sufficient quadrupole
collectivity to be accepted as a β-vibrational state. In the
result, the calculated values also imply a pairing vibra-
tional mode for the first 0+ state, they might be not a
completely pure mode, though. Furthermore, theoretical
S̃n(p, t) values show that only the 1.,2.,8.,9. and 13. states
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Fig. 1. Distribution of the calculated and experimental ener-
gies of 158Gd.

can be pairing vibrational states. Naturally, the remaining
states can be 2qp in character. Since, there is not a recent
(t, p) experiment on the 158Gd isotope, the experimental
spectroscopic factors corresponding to the measured states
in [20] can be used for comparison. Thus we conclude that
our theoretical (t, p) spectroscopic factors agree with the
data for the two lowest states.

In fig. 1, the experimental energy values have been
compared with the calculated values of the present work
(PPQ and PPQSQ models) and of refs. [7,8]. The results
of table 1 have been used for the present work. Sun et al.

successfully obtained a large number of 0+ states up to
∼ 3.5 MeV as a 2 or 4 quasiparticle configuration. How-
ever, although they calculated seven 0+ below ∼ 2 MeV
as in the experimental case, there is a gap in their cal-
culated energy values located between ∼ 1850 keV and
∼ 2500 keV, i.e. a gap of 650 keV [7]. On the contrary,
the experiment gives 5 states in that region, i.e. at 1954,
1960, 1972, 2277, and 2338 keV, respectively [4]. It seems
impossible to remove such a large gap and to rearrange
the distribution of the states by adjusting the model pa-
rameters. Moreover, there is also a similar disagreement
in the IBM results for the distribution of the states [6].
Zamfir et al. showed that by taking into account one f
and one p boson, IBM is able to describe the number of
states increasing their energies up to 4 MeV. It is clear
from fig. 1 that the most consistent distribution belongs
to the present model (PPQSQ).

In fig. 2, the B(E2;Kπ = 0+ → 2+
gsb) transition prob-

abilities have been presented and compared with experi-
ments. The theoretical E2 decays of the 0+ states to the
2+ground state are all weak except the first two ones. The
present model gives the best values for the first state and
also the second state. While the first state is in good agree-
ment with the data, a relatively large B(E2) value can be
obtained for the second state (∼ 0.25 w.u.). As stated in
refs. [8,7], Iudice et al. could find ∼ 0.03 w.u. and Sun et

al. could find only ∼ 0.004 w.u. for the B(E2) value for
the second state, respectively. Whereas, as is seen from
the tables, it is possible to increase the B(E2) values for
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Fig. 2. Calculated and experimental B(E2) values of the
158Gd (data from ref. [8]).
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Fig. 3. Calculated and experimental B(E0) values of the
158Gd (data from refs. [8,21]).

the first two states by changing the interaction strength
parameters.

In fig. 3, the ρ2(E0) transition probabilities have been
presented and compared with the data. Experimentally,
like the E2 decays a similar situation exist also for the
monopole transitions, i.e. the first strength is weaker than
the second one. However, the model gives a stronger value
for the first state and a weaker value for the second one.
Moreover, there exist also a few appreciable strengths for
the 3., 6., and 14. states.

In fig. 4, the spectroscopic factors for (p, t) reactions
have been presented and compared with the data. The
mentioned problem also continues for the S̃n(p, t) values: a
negligible strength is collected in the first one the strongest
strength is collected in the second one. The present model
gives about 0.143 and 0.043 for the spectroscopic fac-
tors of the first and the second states, respectively, ex-
actly the opposite of the data. However, the theoretical
summed strength of the (p, t) reaction for the parameters
in table 1 is in agreement with the data, as is seen in
the right lower corner of table 1, i.e. both of them are
about 25% of the ground-state spectroscopic factor [4].
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Fig. 4. Calculated and experimental spectroscopic factors for
(p, t) reaction in 158Gd (data from ref. [8]).

Nevertheless, obtaining a considerable S̃n(p, t) value for
the second state is an important development for the the-
ory, since, in ref. [8], Iudice et al. obtained only 0.006 and

0.01 for the S̃n(p, t) value of the second state, by using the
0.26 and 0.29 quadrupole deformations, respectively.

5 Conclusion

Recent observations of a large number of 0+ states
in heavy deformed regions opened a new window and
emphasized the importance of the microscopic approach
to the atomic nucleus. In fact studies in this field imply
the need for new models and approximations based
on the microscopic approach. Specifically by using the
spin-quadrupole interaction here, we corroborate that
this interaction produces an extra collective 0+ state
below the gap. Thus a good distribution of the states
can be obtained up to ∼ 3 MeV. In any case, as in
earlier studies [7,8] introducing the two phonon terms
to the model might limit the number of 2qp states,
especially above ∼ 2.5 MeV. As is stated before, it
is possible to find a relatively large strength for the
E2, E0 decays and spectroscopic factors of the second
state by means of the spin-quadrupole interaction.
However, it is not possible to suppress the strengths of
the mentioned quantities for the first state by means
of the spin-quadrupole interaction. This is a difficult
theoretical problem to overcome. In addition, it seems
impossible to solve the problem using quadrupole-pairing
instead of spin-quadrupole interaction [8]. Because earlier
experiments show that the opposite situation exists for
the (t, p) reaction [20], i.e. the (t, p) reaction strength of
the first state is stronger than that of the second one.
However, by using spin-quadrupole interaction, finding
relatively large strengths for the collectivity of the second

state is a significant development for the theory. In
fact for a pure spin-quadrupole state, the spectroscopic
factors should be negligible, since spin-quadrupole forces
have no diagonal matrix elements, so wave functions for
the pure spin-quadrupole states can include only the
quasiparticles on different single-particle levels. Then the
large calculated spectroscopic factors of the second state
display strong coupling between the spin-quadrupole and
other forces. Furthermore, it is clear from the secular
equation (14) that the first term, which contains pairing
effect, gives a contribution for the formation of all states.
As a consequence, there is an indirect effect of the pairing
interaction on the collectivity of the spin-quadrupole ex-
citation. Thus, the indirect coupling in question increases
the pairing collectivity i.e. the value of the spectroscopic
factors.

The whole results show that without using the
octupole-octupole interaction with two phonons, it is pos-
sible to obtain a fairly good description such a large num-
ber of 0+ states in the framework of the present model.
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